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BLADE-ELEMENT PEEFORMANCE OF 0.7 WB-TIP RADIUS 

RATIO AXIAL-FLOW-PUMP ROTOR WITH TIP 

DIFFUSION FACTOR OF 0.43 

by James E. Crouse and Donald M. Sandercock 

Lewis Research Center 

SUMMARY 

A 9-inch-diameter axial-f low pump w a s  t e s t e d  i n  water. T!ne double- 
circular-arc-bladed ro to r  had a hub-tip rad ius  r a t i o  of 0.7, t i p  s o l i d i t y  of 
1 . 0 2 ,  and design D-factors of 0.43 and 0.70 a t  the  t i p  and hub, respect ively.  
The inves t iga t ion  covered operations under both noncavitating and cav i t a t ing  
conditions. Radial  surveys of flow conditions a t  the ro to r  i n l e t  and o u t l e t  
were taken, and performance across  a selected number of blade elements w a s  com- 
puted and presented. 

The l a r g e s t  va r i a t ion  of blade-element performance parameters with i n l e t  
flow occurred i n  t h e  blade t i p  region, thus ind ica t ing  the  c r i t i c a l i t y  of de- 
s ign i n  t h i s  area. Over the  upper 30 percent of blade height ,  loss -coef f ic ien t  
d i s t r i b u t i o n s  w i t h  incidence angles  f o r  t h i s  r o t o r  configuration indicated t h a t  
pos i t i ve  blade s t a l l  (sharp increase i n  l o s s  coe f f i c i en t )  occurred very close 
t o  the  minimum-loss incidence angle, but  the  loss  coe f f i c i en t  increased very 
slowly moving from reference incidence angle toward a negative s t a l l  condition. 

A t  design flow the  design and measured performance compared favorably a t  
a l l  r a d i a l  loca t ions  except a t  the  t i p  element. Because of a decrease i n  the  
inlet-f low coef f ic ien t  a t  th i s  element (probably due t o  casing boundary l a y e r ) ,  
t h e  t i p  r o t o r  element operated a t  an incidence angle above the  design value and 
very c lose  t o  a blade s t a l l  condition. Consequently, the  t ip - reg ion  perfor-  
mance showed s igni f icant  deviat ions from the predicted design values. Fur- 
thermore, although a t  design flow most of the  blade elements were operating 
near t h e i r  respect ive minimum-loss operating poin ts ,  t h e  flow margin between 
design and blade s t a l l  w a s  s m a l l .  

The measured pump r o t o r  performance i s  compared w i t h  predicted values 
using the  design procedures of reference 1. 
cedure a t  high in le t - f low angles  i s  demonstrated, and t h e  need f o r  add i t iona l  
da ta  and/or modifications t o  the  design system f o r  use i n  the  high inlet-f low 
angle a rea  i s  indicated.  

The s e n s i t i v i t y  of t he  design pro- 
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Tests under cav i t a t ing  condl t ions showed t h a t  t he  e f f e c t s  of cav i t a t ion  on 
ro to r  blade performance were f irst  noted a t  a cav i t a t ion  number of approxi- 
mately 0.19. 

INTRODUCTION 

%e success of the  design of an axial-flow-pump rotor (or s t a t o r )  depends 
pr imari ly  on the  a b i l i t y  to pred ic t  accura te ly  the  following: 

(1) Deviation of the  f luid-f low angles  from t h e  blade angles  

( 2 )  Level of l o s s  of the  flow process through the  cascades of blades 

(3) Incidence angle (or angle of a t t a c k )  a t  which the  l o s s  i s  i n  a 
minimum-loss range 

Considerations of maximum blade loading, flow range, and s t a b i l i t y  general ly  
guide the  se l ec t ion  of t he  previous bas ic  parameter values. F ina l ly ,  t he  blade 
elements should be matched f o r  ove ra l l  optimum design. 

I n  reference 1 the  blade-element performance from a l a rge  nuniber of cas- 
cades and rotors u t i l i z i n g  a i r  as the  test  f l u i d  a r e  correlated,  and empirical  
r u l e s  for predic t ing  minimum-loss incidence angle, devia t ion  angle, and loss  
a re  formulated. The o v e r a l l  and blade-element performance of an axial-f low 
r o t o r  pumping water i s  presented i n  references 2 and 3. I n  addi t ion  to t h e  
d i f fe rences  of f l u i d s  and flow ve loc i t i e s ,  t he  most s ign i f i can t  d i f fe rence  from 
the  da ta  of reference 1 i s  the  l a rge  blade stagger angles (or i n l e t  angles )  a t  
which the  water pump operates  as compared t o  those used by air-compressor ro to r  
blades. 
water with those predicted from the  design rules presented i n  reference 1 are  
made. 

Comparisons of t he  observed r e s u l t s  of t h i s  pump r o t o r  operating i n  

To evaluate f u r t h e r  t he  u t i l i t y  of applying the  data  of reference 1 t o  
the  design of axial-flow pumps, the  performance of t h i s  second pump ro to r  w a s  
investigated.  
t i p  r ad ius  r a t i o  than t h a t  reported i n  reference 2. The design and o v e r a l l  
performance of t h i s  ro to r  a r e  reported i n  reference 4. This r epor t  presents  
the  performance of the individual  blade elements and compares it with the  de- 
sign c r i t e r i a  of reference l. Cavitation perfornance i s  a l s o  presented. 

This r o t o r  had a higher l e v e l  of blade loading and a higher hub- 

APPARATUS AND PROCEDURE 

The ro to r  design procedure, t e s t  f a c i l i t y ,  instrumentation, and t e s t  meth. 
ods a r e  presented i n  some d e t a i l  i n  reference 2; consequently, only a b r i e f  
resume of s a l i e n t  po in ts  w i l l  be made herein.  
appendix A. ) 

( A l l  symbols a r e  defined i n  
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Rotor Design 

The pump ro to r  w a s  9 inches i n  diameter w i t h  a 0.7 hub-tip rad ius  r a t i o .  

TABLE I. - RADIAL DISTRIBUTIONS OF DESIGN PARAMETERS 

[Rotor t i p  diameter, 9.00 inches; number of 
blades,  19. ] 

Rot or 

radius  
r a t i o  

hub-tip 

r/rt 

Tip L O C  
.9: 
.9c 
.8.5 
.8C 
.7.5 

Hub .7C 

D i f  f U- 
s ion  
f a c t o r ,  

D 

0.426 
.433 
.464 
.505 
.555 
.615 
.693 

Cnci- 
h n c e  
Ingle > 
1, 

deg 

6.4 
2.0 

.9 
-5 
.6 

1.0 
1 .2  

Devia- 
t ion  
%le  

6, 
deg 

4.6 
5.4 
6.9 
7.8 
8.3 
8.8 
9.3 

:amber 
tngle 7 

C P J  

deg 

0 
l l . 8  
16.4 
19.8 
22.1 
24.6 
27.6 

jo l id i ty ,  
U 

1.01 
1.06 
1.12 
1.19 
1.26 
1.35 
1.44 

Zhord, 

i n .  
CY 

~ 

a 1 

j e t t ing  
, 

r 

67.1 
64.9 
62.8 
60.5 
58.2 
55.3 
52.2 

i a t i o  of 
maximum 

ihicknes: 
;o chord; 
t m d c  
0.0700 

.0725 

.0750 

.0775 

.0800 

.0825 

.OB50 

The design u t i l i z e d  a blade element concept with design ca lcu la t ions  made 
across  a selected number of blade elements. These a r e  then  stacked t o  form a 
blade. 

The ve loc i ty  diagrams were constructed u t i l i z i n g  the  following assump- 
t i o n s  and se lec t ions :  

Zc-60783 

(1) N o  inlet  whi r l  (Vo,l = 0) 

( 2 )  I n l e t  r e l a t i v e  flow angle 
of 73.6O a t  the  t i p  ( i d e a l  
inlet- f low coe f f i c i en t  of 
0.294 when combined with 
(1) 1 

(3)  Inlet-f low coe f f i c i en t  01 
constant a t  a l l  r a d i i  

( 4 )  Radial ly  constant energy 
addi t ion  (qi = 0.294) 

(5)  Assumed r a d i a l  d i s t r ibu t ion  
of loss  coe f f i c i en t  

( 6 )  Radial  equilibrium 
(ah/& = </gr) 

Double - c i r e  ular a rc  -blade 
shapes (c i rcu lar -a rc  camber l i n e )  
were se lec ted  t o  e s t ab l i sh  t h e  de- 

Figure 1. - Rotor. 
3 
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s i r ed  flow condltions.  Blade incidence and devia t ion  angle were computed from 
the  equations of reference 1 with s l i g h t  modifications as described i n  re fer -  
ence 4. 

Radial  d i s t r i b u t i o n s  of s ign i f i can t  design parameters a r e  given i n  t a b l e  I 
and on the  performance f igures .  
ure 1. 

A photograph of the  rotor i s  shown i n  f i g -  

Test  F a c i l i t y  

The pump performance w a s  invest igated i n  the  Lewis Research Center water 

During operat ion t h e  gas content remains below 3 p a r t s  per  mi l l ion  by 
The f i l t e r i n g  system i s  capable of removing so l id  matter l a rge r  than 

tunnel. The major components of t h i s  f a c i l i t y  a r e  shown schematically i n  f i g -  
ure 2. 
weight. 
5 microns. 

T e s t  Procedure and Instrumentation 

The t e s t  procedure consis ted of s e t t i n g  flow, speed, and i n l e t  pressure 
and then obtaining r a d i a l  surveys of t o t a l  and s t a t i c  heads p lus  f low angle a t  
t he  blade i n l e t  and ou t l e t .  The survey instruments shown i n  f igu re  3 con- 
s i s t e d  of a claw-type probe t h a t  measured t o t a l  pressure and angle and a wedge- 
type probe t h a t  measured s t a t i c  pressure and angle. 
loca ted  approximately 1 inch upstream and downstream of the  blade leading and 
t r a i l i n g  edge, respect ively.  A head ca l ib ra t ion  f ac to r  f o r  each s t a t i c  wedge 

Measuring s t a t i o n s  were 

,-Circulating pump for 
Heat exchanqer ,/ degasification process 

\-Test section 

r Pressure 
I control l ing 
I accumulator / 
1 

.,--- ---, '.%. ..... . 

(a) Total-pressure claw. (b) Static-pressure wedge. 

Figure 3. - Probes 
I/ CD-6902 

Figure 2. - Lewis water tunnel. 
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w a s  determined i n  an air  tunnel  and applied t o  t h e  measured s t a t i c  pressures i n  
t h e  w a t e r  tunnel .  Rotor speed was  obtained f r o m  an e lec t ronic  speed counter 
used i n  conjunction with a magnetic pickup, and f l o w  w a s  measured by means of a 
ventur i  flowmeter. Water temperature was  maintained a t  a constant value of 
approximately 80' F. The estimated accuracy of t h e  following measurements rep- 
resents  t h e  inherent accuracy of t h e  measuring and recording devices employed: 

Flow r a t e ,  Q, percent . . . . . . . . . . . . . . . . . . . . . . . .  < + L O  
Rotative speed, N, percent . . . . . . . . . . . . . . . . . . . . . . .  f0.5 
Head r i s e ,  AH, percent of f u l l  scale  . . . . . . . . . . . . . . . . .  < +0.5 
Flow angles, p,  deg . . . . . . . . . . . . . . . . . . . . . . . . . .  k1.0 
Discrepancies a r i s i n g  from unsteady flow conditions,  c i rcumferent ia l  var ia t ions  
of flow, cav i t a t ion  on the  probes, e t c . ,  could not be evaluated. 

The equations necessary f o r  ca lcu la t ion .of  t he  desired performance param- 
e t e r s  a r e  presented i n  appendix B. 

Figure 4 provides some check on the  r e l i a b i l i t y  of the data  by comparing 

9 c 

0 

Net positive 
suction head, fl I ' Hs:, I 

fl 1 4 0 133 

.33  .35 .37 

Rotative 1 
.39 .41 

Average flow coefficient, Q 
(a) Inlet measuring station. 

.31  .33 

b 

- c 
1 

(b) Outlet measuring station. 

Figure 4. -Comparison of integrated weight flows at blade inlet and outlet with those measured by venturi meter. 

t he  integrated weight f l o w s  a t  the  blade i n l e t  and o u t l e t  with those measured 
by the  ventur i  flowmeter. The comparisons a t  both the  i n l e t  and o u t l e t  mea- 
suring s t a t ions  a re  considered good and presage confidence i n  the  v a l i d i t y  of 
the  observed flow measurements. 

Select ion of Blade-Element Parameters f o r  Analysis 

3 9 .41 

The ana lys is  of ro to r  performance p a r a l l e l s  the  design procedure i n  t h a t  
individual  element performance i s  analyzed and then in tegra ted  t o  obtain the  
ove ra l l  blade row performance. Through a given blade passage the  flow pa t t e rns  
a r e  pr imari ly  a f fec ted  by 

5 



(1) Incidence angle 

( 2 )  Deviation angle 

(3) Loss l eve l ,  or l o s s  coe f f i c i en t  

A s  a measure of t he  blade loading, t he  d i f fus ion  f a c t o r  D defined and devel- 
oped i n  reference 5 i s  u t i l i zed .  The cav i t a t ion  number k provides a measure 
of the  s u s c e p t i b i l i t y  of t h e  blades t o  cavi ta t ion .  
t he  f l u i d  done by a given blade row i s  computed from the  r e l a t i o n  

The amount of tu rn ing  of 

The energy addi t ion  imparted t o  the  f l u i d  by t h e  r o t o r  blades i s  shown as 
an i d e a l  head-rise coe f f i c i en t  Jri and i s  dependent on the  f l u i d  turn ing  and 
ax ia l  ve loc i ty  changes ( see  eqs. (Bl) and ( B 7 )  of appendix B). 
support both design and ana lys i s  procedures and t o  permit reproduction of de- 
s i r ed  ve loc i ty  diagrams, the  da ta  a r e  presented i n  terms of the  following 
blade-element parameters: 

Accordingly, t o  

(1) Head-rise coe f f i c i en t  $ 

i ( 2 )  ideal head-rise coe f f i c i en t  $ 

(3) Eff ic iency 7 

(4 )  Incidence angle i 

(5) Deviation angle 6 

( 6 )  Loss coe f f i c i en t  

( 7 )  Diffusion f ac to r  D 

(8)  Flow coe f f i c i en t  CP 

( 9 )  Cavi ta t ion number k 

(10) Fluid-flow angle p 

All parameters a r e  defined by t h e  equations of appendix B. 

RESULTS AND DISCUSSION 

A n  i n i t i a l  s t ep  i n  an inves t iga t ion  of th is  type i s  the  determination of 
a n  i n l e t  pressure (compatible with r o t o r  speed) above which the  measured per- 
formance i s  not a f f ec t ed  by cavi ta t ion ,  or vapor formation, occurring i n  the  
flow passages around the  blade. Operation above and below t h i s  pressure i s  de- 
f ined herein as noncavitating and cavi ta t ing ,  respect ively.  Performance ob- 
served under these  two types of operat ion w i l l  be presented and discussed i n  

6 



s e p u a t e  sections.  

For t h i s  p a r t i c u l a r  r o t o r  operating i n  water a t  a blade t i p  speed of 
141.5 f e e t  per  second, as the  system head w a s  reduced the  i n i t i a l  e f f e c t s  of 
cav i t a t ion  on measured r o t o r  performance occurred at an  i n l e t  head of approxi- 
mately 1 1 7  f e e t  (corresponding t o  a suct ion spec i f ic  speed of approximately 
7600). A t  these  operating conditions cav i t a t ion  on t h e  blade surface and i n  
the  t i p  vortex w a s  v i s i b l e  through a t ransparent  ac ry l i c  p l a s t i c  casing. 
creasing the  i n l e t  pressure t o  160 f e e t  eliminated the  blade surface cav i t a t ion  
but  not a l l  t h e  t i p  vortex cavi ta t ion ;  hence, performance obtained a t  an i n l e t  
head of 160 f e e t  (or grea te r )  i s  presented here in  as noncavitating. 

In- 

I n  general ,  the  curves presented a re  self-explanatory and only poin ts  of 
spec ia l  s ignif icance w i l l  be discussed. 

Noncavitating Performance 

Overall performance. - The noncavitating o v e r a l l  - performance i s  presented 
i n  f igu re  5 with mass-averaged head-r ise  coe f f i c i en t  JI and ef f ic iency  7 

.x) 
\x .34 

\ 

tip suction head, 
Rotor Net positive 

I I I I I I I  I1 

0 
0 

.38 .42 .26 .?u 
Average flow coefficient, (p 

speed, 

ftlsec 
113 

"tl 

,+ 

.34 .38 .42 

Figure 5. - Overall performance of axial-flow-pump rotor for noncavitating conditions. 

shown as funct ions of f l o w  coe f f i c i en t  
parison. Since the  ove ra l l  performance i s  discussed i n  reference 4, only the  
major po in ts  a r e  repeated b r i e f l y  herein.  

v. Design values a r e  included f o r  com- 

A t  design-flow coef f ic ien t  (assuming a 3-percent boundarv l aye r  blockage 
f a c t o r )  t h e  r o t o r  produced a s l i g h t l y  higher-than-design head r i s e  a t  a higher- 
than-design eff ic iency.  If the  whole range of operations i s  considered, t h ree  
s ign i f i can t  performance f ea tu res  a r e  noted f o r  t h i s  ro tor ,  namely, 

(1) High l e v e l  of e f f i c i ency  

7 



( 2 )  Re la t ive ly  wide range of operat ion over which a high ef f ic iency  
(>O. 90) w a s  a t t a ined  

(3) Small flow margin between t h e  design poin t  and an operating condi t ion (6 = 0.271) below which excessive r i g  v ib ra t ions  prevented prolonged 
operat  ion  

Blade-element performance. - Figure 6 presents  t h e  r a d i a l  d i s t r i b u t i o n s  
of flow and se lec ted  blade-element performance parameters f o r  a range of oper- 
a t i n g  conditions.  This type of p l o t  d i sp lays  t h e  r a d i a l  d i s t r i b u t i o n s  of flow 
and r a d i a l  matching of blade-element performance under various modes of oper- 
a t ion .  It a l s o  ind ica t e s  t he  range of in le t - f low condi t ions a succeeding sta- 
tor row would be required to accept. 

Over the  range of flow covered by f igu re  6, t h e  i n l e t  conditions show no 
s ign i f i can t  change i n  the  r a d i a l  d i s t r i b u t i o n s  of flow parameters. Axial ve- 
l o c i t i e s  are near ly  constant  across  t h e  passage with the  s m a l l  dropoff i n  the  
t i p  region probably due to e f f e c t s  of casing boundary layer .  Reference 4 a l s o  
showed a decrease i n  i n l e t  t o t a l  head a t  t h i s  s t a t i o n  f o r  a l l  operating condi- 
t ions.  Frero ta t ion  of t he  f l u i d  i s  s m a l l  a t  a l l  operating poin ts  and, i n  gen- 
e r a l ,  increases  s l i g h t l y  as flow i s  decreased. 

The r a d i a l  d i s t r i b u t i o n  of out le t - f low conditions and performance r e l a t e s  
the  individual  element performances through the  r a d i a l  equilibrium require-  
ments. 
formance a t  a given i n l e t  flow, some knowledge of the va r i a t ion  of deviat ion 
angle and loss with incidence angle f o r  each element must be avai lable .  
type of information i s  presented la ter  i n  t h i s  sect ion.)  
t i o n s  of out le t - f low conditions and element performance f o r  this rotor ind ica te  
t h a t  t he  blade t i p  region d isp lays  the  g rea t e s t  s e n s i t i v i t y  to changes i n  
inlet-f low coef f ic ien t .  The following observations a r e  made: 

To construct  t he  r a d i a l  d i s t r i b u t i o n  of out le t - f low conditions and per-  

(This 
The r a d i a l  d i s t r ibu -  

(1) For any given value of blade loading (as indicated by D-factor va l -  
ues) ,  t he  l e v e l  of l o s s  measured i n  the  t i p  region i s  several  times t h a t  ob- 
served a t  any other  r a d i a l  locat ion.  This ind ica t e s  the  occurrence of t i p  
clearance and secondary flows and t h e i r  e f f e c t s  on the  l e v e l  of l o s s  i n  t h i s  
region. 

( 2 )  The energy addi t ion  va r i a t ion  w i t h  i n l e t  flow coe f f i c i en t  i s  consider- 
A simple ve loc i ty  ably l a r g e r  i n  the  t i p  region than at  other  r a d i a l  s ta t ions .  

diagram analys is ,  assuming the  devia t ion  angles  or out le t - re la t ive- f low angles 
remain constant,  i nd ica t e s  t h a t  f o r  a given change of out le t - f low coe f f i c i en t  
the energy addi t ion  qi 
angle increases.  I n  an a c t u a l  appl icat ion,  however, t he  changes obtained from 
these  idea l ized  ca lcu la t ions  are tempered by r a d i a l  equilibrium requirements 
and the  e f f e c t s  of the r a d i a l  gradient  of l o s s  on the  r a d i a l  va r i a t ion  of ax ia l  
veloci ty .  

change w i l l  be g rea t e r  as t h e  out le t - re la t ive- f low 

(3)  The e f f e c t s  of the r a d i a l  va r i a t ions  of l o s s  coe f f i c i en t  a r e  observed 
on both the  d i s t r i b u t i o n s  of ac tua l  head-r ise  coe f f i c i en t  and out le t - f low 
coe f f i c i en t  CP I n  both cases the grad ien ts  i n  the  t i p  region a r e  l e s s  than 

2' 
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might be expected from t h e  observed sharp gradien ts  of energy addition. This 
i s  noted p a r t i c u l a r l y  when comparing r a d i a l  d i s t r i b u t i o n s  a t  inlet-f low coef- 
f i c i e n t s  of 0.302 and 0.284. 

For comparison with design, the  da ta  obtained a t  a flow coe f f i c i en t  of 
0.284 (design 
a r y  layer  on the  ve loc i ty  i n  t h e  t i p  regions r e su l t ed  i n  a lower-than-design 
ax ia l  ve loc i ty  at the  t i p  and a s l i g h t l y  higher-than-design a x i a l  ve loc i ty  a t  
a l l  other  s ta t ions .  This i s  responsible  f o r  t h e  comparison of design and mea- 
sured incidence angle shown. 
a t  a l l  r a d i i  i n  comparison to the  design assumption of no i n l e t  whirl .  A t  t he  
design l e v e l  of performance a t  t h e  hub measuring s t a t i o n  (r/rt = 0.728) an 
in le t - f low angle of 2.7' r e s u l t s  i n  a d i f fe rence  of 0.5' i n  incidence angle and 
a 3- to 4-percent d i f fe rence  i n  energy addi t ion.  

@ = 0 .282)  a r e  used. A t  t h e  i n l e t  t h e  e f f e c t s  of casing bound- 

Small posi t ive-f low angles ( < 3 O )  were measured 

. 
The o u t l e t  d i s t r i b u t i o n s  of flow conditions and performance parameters 

show t h a t  the  l a r g e s t  va r i a t ions  from design a r e  occurring i n  t h e  t i p  region. 
The energy addi t ion  qi 
both deviat ion angle 6 and out le t - f low coe f f i c i en t  'P2 a r e  lower than design. 
Although the  l o s s  coe f f i c i en t  CD i s  a l s o  higher than design, the r e s u l t i n g  
e f f ec t  i s  a higher-than-design head-r ise  coe f f i c i en t ,  but  a t  a lower-than- 
design eff ic iency.  The reason f o r  the  low value of deviat ion angle a t  t h i s  
t i p  element is  not r e a d i l y  explained. The sharp increase i n  l o s s  coe f f i c i en t  
a t  the  design flow over other  flow condi t ions ind ica t e s  t h a t  t he  t i p  element 
may be in ,  or close to, a s t a l l e d  condition. If so, a measurement e r r o r  would 
not be unexpected, although t h e  ove ra l l  in tegra ted  and ventur i  measured flows 
check very c lose ly  a t  t h i s  operating condition. 

is s i g n i f i c a n t l y  higher than t h e  design value because 

- 

A t  a l l  other elements the  d i f fe rences  between the  design and the  observed 

I n  general ,  t he  predicted (design)  l o s s  coe f f i c i en t s  exceeded the  ob- 
values of blade-element parameters a r e  i n  the  same d i rec t ion ,  as noted on the  
curves. 
served values ( e spec ia l ly  i n  the  hub region);  although the  measured energy 
addi t ion  w a s  lower than design, the  measured and design values of head-r ise  
coe f f i c i en t  compared favorably a t  a l l  r a d i i .  The r e l a t i v e l y  low values of 
l o s s  coef f ic ien t  f o r  a l l  bu t  t he  t i p  element seem to ind ica te  t h a t  most of t he  
elements a r e  reasonably wel l  matched (operat ing c lose  t o  minimum loss) a t  the 
design flow point. 

The comparison i l l c s t r a t e s  the  s e n s i t i v i t y  of design of blade elements 
with high i n l e t  angles. 
sults i n  s ign i f i can t  changes i n  the  i d e a l  head-rise coe f f i c i en t  f o r  t h i s  
type ve loc i ty  diagram. 
formance and r a d i a l  equilibrium requirements. I n  addi t ion,  it a l s o  ind ica t e s  
the  need f o r  prec ise  experimental techniques and instrumentation when obtaining 
survey da ta  of t h i s  type. 

A va r i a t ion  of 1' i n  incidence or deviat ion angle re -  

'ki 
This i n  t u r n  a f f e c t s  both the  l e v e l  of element per- 

The performance of t h e  individual  blade elements as funct ions of incidence 
angle i s  presented i n  f igu re  7. This type of p l o t  i s  used i n  the  ana lys i s  and 
design of individual  blade elements. 

A s  noted earlier, t he  bas ic  parameters used i n  a ro to r  design a re  minimum- 
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l o s s  incidence angles  p lus  the  l o s s  l e v e l  and devia t ion  angle a t  the  reference 
incidence angle. A t  r a d i a l  pos i t ions  1 and 2 (r/rt = 0.971 
t i v e l y )  t he  flow ranges covered defined minimum-loss incidence angles reason- 
ably well. Both of these  blade elements d i sp lay  a very sharp increase i n  loss  
on the  pos i t i ve  (high incidence) s ide of the  minimum-loss point  and a gradual 
increase i n  l o s s  on the  negative (low incidence) s ide of t he  minimum-loss 
point.  A t  the  remaining radial  measuring s t a t i o n s  minimum-loss incidence an-  
g l e s  a r e  not wei l  defined, but  a l l  elements show a r e l a t i v e l y  s m a l l  increase i n  
l o s s  on the  negative s ide of minimum-loss incidence angle. A s  a r e s u l t  of t h i s  
p a r t i c u l a r  va r i a t ion  of loss from the  minimum-loss poin t  t o  higher incidence 
angles, a t  both r a d i a l  pos i t ions  1 and 2 t he  maximum e f f i c i ency  and m i n i m u m  
l o s s  occur a t  the  same incidence angle. 
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of a t t ack  at which no ve loc i ty  peaks appeared on e i t h e r  blade surface as op t i -  
mum or design. The cascade r e s u l t s  showed the  following r e l a t e d  results: 

(1) For a given cambered blade,  the  angle of a t t ack  operating range de- 
creases  as in le t - f low angle i s  increased. 

( 2 )  For operat ion at a 70' inlet - f low angle, the  angle of a t t ack  operating 
range decreases as camber i s  increased. Also, the  pos i t i ve  s ta l l  angle of 
a t t ack  approaches the  design angle of a t t a c k  more r ap id ly  than t h e  negative 
s t a l l  angle of a t tack.  

.1 t 

The performance c h a r a c t e r i s t i c s  of the  blade elements of t h i s  r o t o r  appear 
t o  comply with the  t rends  noted previously. Assuming t h a t  minimum loss and the  
most favorable blade surface ve loc i ty  d i s t r i b u t i o n s  OCCUT a t  t h e  same operating 
poin t  (angle of a t t a c k ) ,  t he  small difference between the  minimum-loss and pos- 
i t i v e  blade s t a l l  operating poin ts  would i nd ica t e  t h a t  t he  t i p  elements of t h i s  
rotor a re  r e l a t i v e l y  highly loaded, even possibly approaching a l i m i t  loading 
condition f o r  blade elements approximating this  i n l e t  angle range. The t i p  
element ( r a d i a l  pos i t i on  1 (RP 1)) incurred a D-factor of 0.44 a t  t he  minimum- 
los s  operating point.  By the  
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considered a high loading f o r  a t i p  element. The second element (Rp-2) a l so  
achieved a D-factor of 0.44 a t  i t s  minimum-loss operating point.  While this 
value i s  not considered l a rge  f o r  t h i s  element, t he  incidence angle difference 
between t h e  minimum-loss and pos i t i ve  blade s t a l l  operating poin ts  a l so  has 
increased s l igh t ly .  Only performance t rends a r e  considered herein; hence, no 
attempt i s  made t o  assess  e f f e c t s  of blade shape, s o l i d i t y ,  maximum thickness,  
and other parameters on the  observed values. 

It i s  noted t h a t ,  even a t  minimum-loss incidence angle, t h e  l o s s  i n  the  
t i p  measuring s t a t i o n  (RP 1) i s  at  l e a s t  th ree  times t h a t  measured a t  t he  other  
r a d i a l  elements. 
0.123 in .  from outer  w a l l ) ,  t i p  clearance flow, r a d i a l  t ranspor t  of blade 
boundary l aye r ,  and secondary flows probably dl supplement the  p r o f i l e  l o s ses  
t o  some extent  i n  t h i s  area. 
RP 4 (r/rt = 0.794) and RP 5 (r/rt = 0.728) f o r  t he  l e v e l  of blade loading 
( D  > 0.5) as compared t o  the  l e v e l  of l o s s  coe f f i c i en t  observed i n  the  t i p  
region f o r  lower l e v e l s  of blade loading lead t o  speculation t h a t  r a d i a l  t r ans -  
por t  of the  low-energy blade boundary l aye r  i s  occurring even with these  short  
chord blades. 

Losses associated with casing boundary layer  (RP 1 i s  

The very low los s  l e v e l s  (u, < 0.02) observed at  

A method frequent ly  used t o  e s t ab l i sh  the  pos i t i ve  and negative s t a l l  
po in ts  of a ro to r  (and thus def ine the usable flow ranges) i s  t o  assume t h a t  
they occur when the  loss  i s  some mult iple  of the  minimum-loss value. A t  the  
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design-flow operating point ,  the  t i p  element l o s s  coe f f i c i en t  i s  approximately 
twice the  minimum-loss value. Together w i t h  t h e  sharp increase i n  l o s s ,  t h i s  
ind ica tes  t h a t  separat ion of the blade surface boundary layer  has  occurred or 
i s  imminent. Apparently, a t  aesign conditions,  then, the  t i p  10 percent of the  
blade height  w a s  operating i n  a s t a l l e d  condition. 
operating very c lose  t o  t h e i r  minimum-loss poin ts ,  however; hence, the  ove ra l l  
e f f i c i ency  remained high. 

A l l  other elements were 

A t  t he  lowest flow (highest  incidence angle)  a t  which survey da ta  were 
taken, l o s ses  show a sharp increase (approximately three  t imes) over t he  
minimum-loss value a t  r a d i a l  pos i t i ons  1 and 2 ( located a t  10 and 30 percent of 
the  passage height ,  respec t ive ly) .  Thus, i n  the  operating range from design 
Cp = 0.284 t o  = 0.271, the  r a d i a l  ex ten t  of blade s t a l l  conditions increased 
from - a t  l e a s t  10 t o  30 percent of the  blade height.  
a t  r i g  v ibra t ions  became excessive and prolonged operation was 
deemed inadvisable. It seems l i k e l y  tha t  complete blade s t a l l  occurred a t  
these  lower flow (q < 0.271) conditions. 

- 
It w a s  noted e a r l i e r  t h a t  

CP < 0.271 

While blade-element cha rac t e r i s t i c  curves such a s  presented i n  f igu re  7 
have been used pr imari ly  f o r  es tab l i sh ing  design-point data, they a l s o  provide 
the  necessary values of deviat ion angle and l o s s  coe f f i c i en t  for predic t ing  
off-design performance. A t  present  t h e i r  u t i l i t y  l i e s  i n  d i r e c t  appl ica t ion  of 
the  t rends t o  s i m i l a r  blade rows. With the  acquis i t ion  of addi t iona l  da ta  they 
may a i d  i n  the  formulation of de t a i l ed  off-design performance ca lcu la t ion  pro- 
cedure s. 

Comparisons with co r re l a t ions  of reference 1. - A spec i f ic  purpose of t h i s  
inves t iga t ion  w a s  t o  consider the a p p l i c a b i l i t y  of t he  design system f o r  ax ia l -  
flow air-compressor r o t o r s  presented i n  reference 1 t o  the  design of axial-flow 
pmps. An operating condition commonly selected as the  design point  i s  the  
minimum-loss operating point.  For each blade element minimum-loss l e v e l s  and 
the  difference between the  observed pump ro to r  minimum-loss incideixe (and de- 
v i a t ion )  angle and a value calculated from cor re l a t ion  of cascade data ,  
ip - iZ-D and 6p - 6 2 - ~  a r e  compared with s i m i l a r  values recommended from 
air-compressor ro to r  t e s t s  i - i2-D and 6c - 62-D. The following procedure 
w a s  followed: 

C 

(1) From f igu re  7 values of minimum-loss coef f ic ien t  and t h e  corresponding 

P’ incidence angle i deviat ion angle 6p, and d i f fus ion  f a c t o r s  f o r  each e l e -  
ment were selected.  

( 2 )  Fluid-flow angles  were computed by using the  values of (1) plus  blade 
i n l e t  and o u t l e t  angles. 

(3)  From flow angles  and blade-element geometry { s o l i d i t y ,  maximum- 
thickness-to-chord r a t i o ,  and camber angles)  reference incidence and deviat ion 
angles based on two-dimensional cascade co r re l a t ions  (i2-D and 62-D, r e -  
spect ively)  were computed from methods of reference 1. 

( 4 )  Comparisons of measured r o t o r  performance parameters a t  reference con- 
ip - i2-D, 

15 

d i t i o n s  with the  computed values from (3) a r e  presented i n  the form 



FjP - 62-D, and 
on t a b l e  I1 together  with cor rec t ion  f a c t o r s  f o r  incidence and deviat ion 
angles obtained from numerous a i r  compressor t e s t s .  

CO cos pz/2a. The observed values f o r  each element a r e  shown 

TAELE 11. - COMPAKISON OF MEASURED MINIMUM-LOSS PERFOFWINCE PAR/IMETERS 

WITH THOSE COMFDTED FROM DESIGN RuL;ES OF REFERENCE 1 

Radi- 
a1 
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imate performance 

2 1 30 p 
90 
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D 

3.441 

1.440 

1.479 
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While the  da ta  presented i n  t a b l e  I1 r e f e r  only to a minimum-loss design 
poin t ,  they do provide s u f f i c i e n t  evidence t h a t  some extension and possibly 
modification of c e r t a i n  p a r t s  of the design system of reference 1 a r e  neces- 
sa ry  f o r  accurate  pred ic t ion  of reference incidence and deviat ion angles  f o r  
axial  flow pumps. The performance r e s u l t s  of a similar type rotor reported i n  
reference 3 l e d  to t he  same conclusion. A more de t a i l ed  discussion applying 
the  experimental results from t h i s  ro to r  to an evaluat ion of t he  design system 
follows i n  the  sec t ion  Evaluation of Blade Design System. 

I n  f i gu re  8 the loss -coef f ic ien t  parameters a t  minimum-loss incidence 
angle f o r  two r o t o r s  operating i n  water a r e  compared with s i m i l a r  r e s u l t s  ob- 
ta ined  from single-s tage axial-f low air-compressor rotors .  The shaded area 
represents  t he  region i n  which t i p  l o s s  parameters f e l l .  The addi t iona l  r o t o r  
da ta  p lo t t ed  on f igure  8 w a s  taken from reference 3 where s i m i l a r  comparisons 
were made. 

The l o s s  parameter p lo t t ed  i n  f igu re  8 i s  a s implif ied form of the  wake 
momentum thickness  developed iri reference 7. This t h e o r e t i c a l  l o s s  ana lys i s  
( reported i n  r e f .  7 )  e s t ab l i shes  blade-wake momentum thickness  as the  primary 
wake c h a r a c t e r i s t i c  descr ip t ive  of the t o t a l  pressure defec t  r e su l t i ng  from 
boundary l aye r  flow around a blade element and e s t ab l i shes  r e l a t i o n s  f o r  es-  
t imat ing t h i s  blade p r o f i l e  lo s s .  Thus, wake momentum thickness  represents  a 
generalized l o s s  parameter t h a t  i s  a funct ion only of individual  blade wakes 
and independent of the  blade row geometry ( s o l i d i t y  and a i r  angles) .  The es-  
tablishment of a generalized lo s s  parameter i s  f u r t h e r  invest igated i n  r e f e r -  
ence 8 by an ana lys i s  of experimental l o s s  c h a r a c t e r i s t i c s  of low-speed a i r  
cascade sect ions i n  terms of wake momentum thickness  and a blade ve loc i ty  d i f -  
fusion fac tor .  I n  reference 1 the  s implif ied wake momentum thickness  expres- 
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angles of the  pump r o t o r  as compared t o  those encountered i n  the  co r re l a t ion  
of the cascade and a i r  compressor ro to r  data.  A t  present ,  no genera l iza t ion  
w i l l  be attempted on the  basis of t h e  performance of t h i s  l imi ted  number of 
r o t o r s  other than t o  recommend caut ion i n  applying t h i s  l o s s  parameter t o  
b lades  with high o u t l e t  blade angles. 

Cavi ta t ing Performance 

The type of ro to r  whose performance i s  presented here in  i s  o rd ina r i ly  not 
expected t o  operate i n  an environment conducive t o  cavi ta t ion .  I t s  high hub- 
t i p  r a t i o  and l e v e l  of loading a re  t y p i c a l  of the type of ro to r  used i n  the  
high-pressure por t ion  of a mult is tage axial-flow pump. I n  order t o  know the 
l e v e l  of i n l e t  head needed before  such a r o t o r  can be used, however, a minimum 
amount of cav i t a t ion  performance w a s  obtained and i s  presented. Although a l l  
t he  da t a  taken a re  presented, a discussion of t he  cav i t a t ing  performance i s  
l imi ted  t o  a f e w  s ign i f i can t  features. 

Overall performance. - The ove ra l l  performance i s  presented i n  figure 9 
5, ef f ic iency  T ,  i n  t e r m s  of mass-averaged values  of head-rise coe f f i c i en t  

and flow coe f f i c i en t  '5;. 
son. 

Noncavitating performance i s  a l s o  shown f o r  compari.- 

me o v e r a l l  performance i s  discussed i n  reference 4, and the  r e s u l t s  are 
summarized by the  following: 

s ion  i s  cor re la ted  with loss-  
es measured i n  the  three-  
dimensional environment of 
s ingle-s tage compressor 
rotors .  

A spec i f ic  explanation 
f o r  t h e  general ly  lower lev- 
e l s  of the wake momentum 
thickness  expression f o r  pump 
r o t o r s  as compared t o  a i r -  
compressor r o t o r s  i s  not 
r e a d i l y  apparent. Blade- 
geometry f ea tu res  (blade 
shape , camber, so l id i ty ,  as- 
pec t  r a t i o ,  blade thickness  
t o  chord r a t i o ,  e t c . )  a r e  
s i m i l a r .  Also, the  l e v e l s  
of l o s s  coe f f i c i en t  G f o r  
a given l e v e l  of blade load- 
ing  (D-factor) a t  the  var- 
ious blade elements are 
close.  ?"ne one s ign i f i can t  
d i f fe rence  i s  the  high flow 

(1) I n i t i a l  e f f e c t s  of c a v i t a t i o n  on performance of t h i s  ro to r  are f e l t  
a t  an Hsv of approximately 116 feet .  The dropoff i n  performance is observed 
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Figure 9. -Overall performance for cavitating and non- 
cavitating conditions. 

following general  e f f e c t s  and r a d i a l  

only a t  high flow a t  these  i n l e t  condi- 
t i ons .  

( 2 )  A t  design-flow coef f ic ien t ,  
cav i t a t ion  d id  not a f f e c t  r o t o r  head 
r i s e  u n t i l  an  
reached. 

H,, < 89 fee t  w a s  

(3) Rotor e f f i c i ency  5 w a s  de- 
creased from the noncavitating values 
a t  a l l  i n l e t  pressures below an  Hsv of 
Ll.6 f e e t .  

Blade-element performance. - Fig- 
ure 10  presents  t h e  r a d i a l  d i s t r i b u t i o n s  
of flow and blade-element performance 
f o r  an Hsv of 72.5 f e e t  and th ree  
inlet-flow coe f f i c i en t s  covering t h e  
range of operation. These flow condi- 
t i o n s  represent  suct ion spec i f i c  speeds 
of 9009 (x = 0.148) t o  10,220 
(k = 0.100) f o r  in le t - f low coe f f i c i en t s  
of 0.273 and 0.348, respect ively.  To 
observe the  e f f e c t s  of cav i t a t ion  on 
performance, t h e  d i s t r i b u t i o n s  of f i g -  
ure 10 should be compared with the 
curves of f igu re  6 (noncavi ta t ing per- 
formance). With the exception of cavi-  
t a t i o n  number k t he  in le t - f low param- 
e t e r s  a t  t h e  two modes of operat ion are 
similar,  ind ica t ing  t h a t  in le t - f low ge- 
ometry i s  being maintained. Comparison 
of t h e  out le t - f low conditions and e l e -  
ment performance parameters ind ica te  the  

var ia t ions  : 

(1) Both the  i d e a l  and ac tua l  head coe f f i c i en t s  a r e  similar, bu t  under 
cav i t a t ing  conditions (Hsv = 72.5 f t )  the  l e v e l  of performance i s  decreased. 

- 
( 2 )  Loss-coeff ic ient  p l o t s  show the  same high values  of u) i n  the t i p  

region compared t o  other  r a d i a l  locat ions.  
with occurrence of cavi ta t ion .  

Also, t he  leve l  of loss increases  

(3)  The general  t rend  of deviat ion angle i s  t o  increase as Hsv i s  low- 
ered ( cav i t a t ion  increasing) .  

( 4 )  Differences i n  r a d i a l  equilibrium requirements a r e  r e f l ec t ed  i n  the  
r a d i a l  d i s t r i b u t i o n s  of flow coef f ic ien t .  Radial  equilibrium requirements 
vary as cav i t a t ion  (or change i n  mode of operat ion)  a f f e c t  the  r a d i a l  g rad ien ts  
of the element performance parameters. 
r a d i a l  d i s t r i b u t i o n  of a x i a l  ve loc i ty  under cav i t a t ing  (Hsv = 72.5 f t )  

A t  t h e  high flows (v = 0.350) the  
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and noncavitating (Hsv > 160 f t )  
flow are surpr i s ing ly  close.  A t  
lower flow coe f f i c i en t s  it ap- 
pears  the cav i t a t ion  e f f e c t s  are 
more severe and comparisons 
would not be as favorable.  I n  
summary, cav i t a t ion  would a f f e c t  
the level  of performance of t h e  
r o t o r  and present  matching prob- 
l e m s  i n  a succeeding blade row 
as w e l l .  

Figure 11 presents  t he  per -  
formance of t he  individual  blade 
elements by showing the  var ia -  
t i o n s  of se lec ted  performance 
parameters with incidence angle. 
Both noncavitating and cavi- 
t a t i n g  da ta  are recorded. 

The same general  e f f e c t s  
of cav i t a t ion  on performance 
noted previously (comparison of 
f ig s .  6 and 10 )  a r e  again evi-  
denced by the  p l o t s  of f i g -  
ure 11. One add i t iona l  resul t  
of cav i t a t ion  indicated by these  
curves i s  t h a t  it appeared t o  
decrease t h e  low-loss incidence 
angle range. 

Radial  Equilibrium 

The design of t h i s  ro to r  
assumed t h a t  simple r a d i a l  equi- 
l ibr ium (neglect ing e f f e c t s  of 
r a d i a l  acce le ra t ions)  defined by 

adequately expresses t h e  r a d i a l  gradient  of ou t le t - f low conditions. 
which i s  reproduced from reference 4, compares measured a x i a l  ve loc i ty  d i s t r i -  
but ions with those computed using the  simple r a d i a l  equilibrium expression. 
The p l o t s  both va l ida t e  t h e  design assumption and ind ica t e  t h a t  t he  simple r a -  
d i a l  equilibrium expression would be appl icable  under a l l  flow conditions,  both 
cav i t a t ing  and noncavitating, experienced i n  these  r o t o r  t e s t s .  

Figure 1 2 ,  
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Figure 11. - Continued. Blade-element performance characteristics 
for cavitating and noncavitating conditions. Rotor t ip speed, 141.5 
feet per second. 

Evaluation of Blade 

Design System 

The design whose perfor-  
mance i s  reported here in  i s  char- 
ac te r ized  by high i n l e t - r e l a t i v e -  
flow angles,  r a d i a l l y  constant 
energy addi t ion,  and high hub- 
t i p  rad ius  r a t i o .  
ing discussion the  performance 
r e s u l t s  from t h i s  r o t o r  and ex- 
periences during t h e  formalizing 
of t he  design a r e  examined with 
reference t o  general  appl ica t ion  
of the  blade design system. 

I n  the  follow- 

The u t i l i t y  of a design sys- 
tem i s  judged on i t s  a b i l i t y  t o  
produce blade rows t h a t  provide 

(1) The desired l e v e l  of 
head r i s e  and an acceptable e f -  
f ic iency  a t  t he  design flow 

( 2 )  Adequate s t ab le  oper- 
a t i n g  flow margin on e i t h e r  s ide 
of the  design flow based on con- 
s idera t ions  of s t a r tup ,  accel-  
e ra t ion ,  and engine t h r o t t l e  
a b i l i t y  requirements 

This pump blade design sys- 
tem f o r  axial-flow stages i s  

c lose ly  pat terned a f t e r  t he  blade design system f o r  axial-flow a i r  compressors 
reported i n  reference 1. The equations take the form 

where i2-D and 62-D a r e  suggested design values of incidence and deviat ion 
angles, respect ively,  obtained from cor re la t ions  of two-dimensional low-speed 
air-cascade performance data.  Rules f o r  pred ic t ing  these values as a funct ion 
of inlet-f low angle, blade s o l i d i t y ,  and maximum blade thickness  a r e  presented 
i n  reference 1. The ip - i2-D and 6p - 62-D represent  adjustments, o r  cor- 
r ec t ion  f ac to r s ,  f o r  t he  e f f e c t s  of operating i n  a three-dimensional environ- 
ment. 

Po ten t i a l  d i f f i c u l t i e s  i n  applying t h i s  system could a r i s e  i n  several  
areas : 
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Figure 11. - Continued. Blade-element performance characteristics 
for cavitating and noncavitating conditions. Rotor t ip speed, 141.5 
feet per second. 

(1) I n  general ,  pumps u t i -  
l i z e  higher in le t - re la t ive- f low 
angles  than air compressors. I n  
many pump designs, including the  
design reported herein,  a number 
of elements of t he  PLXIQ i n  t h e  
t i p  region w i l l  have i n l e t  an- 
g l e s  above the  maximum values 
covered in-cascade invest iga-  
t i o n s  ( p 1  < 70°).  
i n l e t  angle range, t he  design 
system curves have s teep and 
changing slopes; consequently, 
extrapolat ion i s  uncertain and 
the  accuracy of the  ca lcu la ted  
i2-D values i s  a l s o  unknown. 

I n  t h i s  high 

(2) It i s  not known whether 
t he  three-dimensional cor rec t ion  
f a c t o r s  ic - i2-D and 
6, - 6 2 - ~  empir ical ly  de te r -  
mined f o r  a i r  compressors may be 
appl ied d i r ec t ly .  

O p t i m u m  design-point per-  
formance would be obtained i f  
a l l  t h e  r o t o r  elements were op- 
e ra t ing  a t  t h e i r  minimum-loss 
incidence angles a t  the  design 
flow. Blade-element performance 

indicated t h a t  t h e  measured r o t o r  minimum-loss incidence angles were higher 
than the  ca lcu la ted  two-dimensional values 

Thus, ip - i2-D 
rec t ion  f a c t o r s  
compressor r o t o r s  a r e  negative ( see  t a b l e  11). 

i 2 - D  by 2.3' ( t i p )  t o  3.4' (hub). 
i n  equation (2) should be pos i t ive .  

i, - i2-D 

By cont ras t ,  these cor- 
recommended f o r  low i n l e t  Mach number a i r -  

I f  it i s  assumed t h a t  t h e  blade-element performance curves obtained from 
t h i s  r o t o r  a r e  somewhat t yp ica l  of those f o r  t h i s  type of r o t o r  design, a s ig-  
n i f i can t  f ea tu re  i s  t h a t  t he  minimum-loss incidence angle occurs very close t o  
the  element s t a l l  operating incidence (considered here in  as e f f ec t ive ly  occur- 
r i n g  when cu = %,l). I f  an increase i n  s t ab le  operating flow range between 
design and blade s t a l l  i s  desired,  t he  design incidence would be moved toward 
the  high flow side of the  minimum-loss incidence by using lower values of 
ip - iZ-D than those noted previously f o r  minimum-loss point.  
element c h a r a c t e r i s t i c s  ind ica te  t h a t  only a s m a l l  penal ty  i n  increased l o s s  
coef f ic ien t  would r e s u l t  from loca t ing  t h e  design poin t  a t  an incidence angle 
s l i g h t l y  lower than the  minimum-loss incidence angle. 

- 

The blade- 

It i s  thus  indicated t h a t  a preferab le  design flow operating point  for a 
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r o t o r  row of t h i s  type would 
u t i l i z e  an incidence angle equal 
t o  o r  s l i g h t l y  l a rge r  than the  
ca l c -da ted  two-dimensional value; 
t h a t  i s ,  ip - iZeD = 0 
s l i g h t l y  po s i t  ive. Cons e quent l y ,  
the  calculated two-dimensional 
deviat ion angles 82-D a re  com- 
pared with measured ro to r  devia- 
t i o n  angles i n  the range of i nc i -  
dence angles  i 2 - D  < i< i 2 - D  + 2'. 

o r  

I n  the  region from 30 t o  7 0  
percent of passage height from 
t h e  t i p  (RP 2, 3, and 4), t he  
measured ro to r  deviat ion angles 
are within approximately 0.5' of 
t h e  ca lcu la ted  two-dimensional 
values. Thus, over t h i s  range 
of blade height ,  the calculated 
two-dimensional values would 
su f f i ce ,  o r  6p - 6 2 - ~  = 0. I n  
the  blade t i p  region the  ob- 

- 10 
m c m 

c 

O b  

Incidence angle, i, deg 

(d) Radial position 4; rotor hub-tip radius ratio, 0.794. served r o t o r  deviat ion angles  
were s l i g h t l y  higher than t h e  
ca lcu la ted  two-dimensional val-  Figure 11. - Continued. Blade-element performance characteristics 

for cavitating and noncavitating conditions. Rotor t ip speed, 141.5 
feet per second. ues, or  EP - 62-D = + 1.5. In 

t h e  blade hub region the  reverse  
A sa t i s fac tor ;  explanation t o  t rend  w a s  observed; t h a t  i s ,  ?jP - g2--, = -2 .5 .  

generalize the  hub value r e s u l t  i s  not apparent other  than t o  note t h a t  it 
occurs i n  the  region where secondary flows and three-dimensional e f f e c t s  a r e  
prevalent.  The very low los s  l e v e l  measured i n  the  hub region and the  s teep 
gradient  of loss i n  t he  blade t i p  region a re  an ind ica t ion  t h a t  secondary flows 
a r e  s ign i f icant .  I n  cont ras t ,  the  correct ion f a c t o r s  determined f o r  axial-f low 
a i r  compressors 6, - 62-D 
values near zero a t  t h e  mean rad ius  and s l i g h t l y  pos i t i ve  values i n  the hub 
region. 

showed s l i g h t l y  negative values i n  the  t i p  region, 

An important design considerat ion i s  the  magnitude and r a d i a l  d i s t r i b u t i o n  
of loss .  The a i r  compressor design methods presented i n  reference 1 suggest 
t he  use of a generalized l o s s  parameter 
however, when the  measured puurp ro to r  l o s ses  a r e  expressed i n  t h i s  form, they 
do not co r re l a t e  with the  air-compressor r e s u l t s .  A t  present t h i s  disagreement 
i s  a t t r i b u t e d  t o  the  e f f e c t s  of t he  r e l a t i v e l y  high f l u i d - i n l e t  angle. 

cos p;/Zo. A s  noted previously, 

A comparison of t h e  measured pump ro to r  l o s s  c o e f f i c i e n t s  and d i f fus ion  
f a c t o r s  at  minimum-loss incidence angle with cascade and air-compressor r e s u l t s  
as reported i n  reference 5 ind ica t e s  the  following: 
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Figure 11. - Concluded. Blade-element performance characteristics 
for cavitating and noncavitating conditions. Rotor t ip  speed, 141.5 
feet per second. 

simple ana lys i s  (no tes  from Penn. S t a t e  Univ. 

(1) I n  t h e  t i p  region the  
l o s s  coe f f i c i en t  w a s  s i g n i f i -  
cantly higher than t h e  value i n -  
d ica ted  from cascade results, bu t  
it did  f a l l  ins ide  t h e  band of 
da t a  obtained from air-compressor 
rotor tests. 

( 2 )  A t  t h e  mean r ad ius  t h e  
l o s s  coe f f i c i en t  w a s  s l i g h t l y  
lower than t h e  cascade value f o r  
t h e  same D-factor and among the  
lower level  of values measured i n  
air-compressor rotor tests.  

(3)  I n  t h e  hub region t h e  
loss coe f f i c i en t  w a s  s i g n i f i -  
can t ly  lower than t h e  cascade 
value and among the  lowest values 
measured i n  air-compressor tes ts .  

The r a d i a l  d i s t r i b u t i o n  of 
l o s s  coe f f i c i en t s  and t h e  compar- 
i son  with cascade values  f o r  s i m -  
i lar  D-factor l e v e l s  of loading 
ind ica te  t h e  presence and impor- 
tance of secondary flows. For 
t h e  present,  secondary flow e f -  
f e c t s  w i l l  be accommodated by 
considering t h e  l o s s  parameter as 
a funct ion of blade loading 
(D-factor) and r a d i a l  loca t ion .  
Some ins igh t  i n t o  the  sever i ty  of 
secondary flows occurring i n  a 
design may be obtained from a 
seminar, 1958) t h a t  i nd ica t e s  

t h a t  t he  quant i ty  of flow involved i n  secondary motions i s  

(1) Direc t ly  proport ional  to t h e  square of the c i rcumferent ia l  p ro jec t ion  
of a blade 

( 2 )  Inversely proport ional  to t h e  angle between the  i n l e t  r e l a t i v e  flow 
(or blade in l e t  camber l i n e )  and t h e  c i rcwnferent ia l  d i r e c t i o n  

The use of these  two parameters provides some q u a l i t a t i v e  d i r ec t ion  to t h e  se- 
l e c t i o n  of a r a d i a l  gradient  of loss .  

The r e s u l t s  obtained i n  t h i s  inves t iga t ion  poin t  out t h e  necess i ty  of ac- 
cu ra t e ly  def ining the  i n l e t  ve loc i ty  diagrams f o r  a design with t h i s  l e v e l  of 
loading and i n l e t  angle. I n  t h i s  case the  outer  casing boundary l a y e r  caused 
th'e tip-element flow ve loc i ty  to f a l l  below i t s  an t i c ipa t ed  design value and 
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the  blade element t o  operate 
a t  a higher than design inc i -  
dence value. This r e su l t ed  
i n  premature s t a l l i n g  flow 
conditions i n  the  t i p  region 
and w a s  p a r t l y  responsible 
f o r  t he  small flow margin be- 
tween design flow and the  
pos i t i ve  blade stall  point.  

Predict ing t h e  e f f e c t s  
of casing boundary layer  on 
t h e  i n l e t  flow d i s t r i b u t i o n  
i s  very d i f f i c u l t ,  and i f  t he  
boundary l aye r  ve loc i ty  gra- 
d i en t  could be accurately 
predicted,  it could not be 
incorporated i n t o  the  blade 
design system because of the  
prohib i t ive  amounts of blade 
t w i s t  involved. Perhaps the  
only cor rec t ion  t h a t  can be 
appl ied i n  t h i s  a rea  i s  t o  
an t i c ipa t e  the boundary l aye r  
e f f e c t s  and allow f o r  them i n  
the  blade design method, p r i -  
marily i n  the  use of lower 
values of ip - i2-D. Im- 
proved methods of ca lcu la t ing  
r a d i a l  gradients  of i n l e t  
ve loc i ty  due t o  streamline 
curvature,  however, should be 
applied. Reference 8 d is -  
cusses t h i s  problem i n  more 
d e t a i l .  

I n  the  design of t h i s  
r o t o r  as discussed i n  r e f e r -  
ence 4 it w a s  noted t h a t  mod- 
i f i c a t i o n s  t o  t h e  ca lcu la ted  

blade parameters i n  the  t i p  region were made. The necessi ty  f o r  t h i s  becomes 
c i e a r  i n  the  following discussion of t he  s e n s i t i v i t y  of t he  blade camber design 
equation a t  high in le t - f low angles  t o  va r i a t ions  i n  the  correct ion f a c t o r s  
ip - i2-D and €ip - 62-D. These l a t t e r  f a c t o r s  a r e  t h e  type of information 
that must be obtained from ro to r  performance r e s u l t s  of inves t iga t ions  such as 
reported here in  and i n  reference 3 or from low-speed air-compressor ro to r  
t e s t s .  To demonstrate t h i s  s e n s i t i v i t y ,  the  design ve loc i ty  diagrams and spec- 
i f i e d  blade shape, s o l i d i t y ,  and blade thickness  values f o r  t h i s  ro to r  were ap- 
p l i e d  t o  the  blade camber design equation f o r  four  d i f f e r e n t  s e t s  of assump- 
t ions .  Calculated design values of blade carriber angle, incidence, and devia- 
t i o n  angles f o r  t he  t i p ,  mean, and hub blade elements a r e  l i s t e d  i n  the  fo l -  
lowing table : 
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Three-dimensional 
correction factors, 

0 

1 
~ 

-1.75 
-. 50 
1.50 

1.50 
-. 50 
-2.50 

Zamb er 
%%le, 

'Po , 
deg 

-11.6 
19.8 
27.6 

0. 3 
28.0 
33.7 

-18.6 
18.4 
30. 7 

6.2 
25.2 
26.6 

Incidence 
angle 

i, 
deg 

10.7 
.5 

1 .2  

3.0 
-5.1 
-3.2 

13.4 
.9 
. 5  

0.7 
-3.7 
-. 6 

Ieviat ior 
angle > 
6, 

deg 

-2.8 
7.8 
9.3 

1.4  
10.4 
10.9 

-7.0 
6.9 

11.6 

5 . 1  
9.1 
6.5 

Par t  1 l i s t s  the  
i n i t i a l  values of three- 
dimensional cor rec t ion  
f a c t o r s  used i n  t h e  de- 
s ign  of t h i s  ro tor .  A t  
t h e  t i p  element, where 
the  t i p  i n l e t - r e l a t i v e -  
flow angle necess i ta ted  
ex t rapola t ing  c e r t a i n  
curves t o  ca l cu la t e  i2-13 

and 62-D, negative val- 
ues of camber and devia- 
t i o n  angles and an unusu- 
a l l y  high value of design 
incidence angle were ob- 
ta ined  as shown. The 
tip-element blade sec t ion  
w a s  a r b i t r a r i l y  changed 

as noted i n  reference 4. 

Pa r t  2 presents  t h e  blade parameters ca lcu la ted  f o r  t h i s  design if  no cor- 
r ec t ions  are made for predic t ion  of three-dimensional e f f ec t s .  

Par t  3 shows the  blade parameter values when the  deviat ion angle correc-  
t i o n  sp - 82-1) as deduced from air-compressor t e s t s  i s  used; t h a t  is, 

6p - 62-D = 6, - 82-D 

The 3O incidence angle cor rec t ion  f a c t o r  w a s  used i n  order t h a t  comparisons 
with t a b l e  I (see  p. 3) values could be made. 

Par t  4 l i s t s  the  values of ip - i2-D and 8p - 82-1) t h a t  would probably 

be recommended f o r  appl ica t ion  i n  the  blade design equation f o r  a redesign of 
t h i s  ro to r  on the  b a s i s  of present  information. The ip - iZ-D var i a t ion  w a s  
se lected t o  provide flow margin between the  design and pos i t i ve  blade s ta l l  op- 
e ra t ing  points .  I n  p a r t  4 t he  blade parameters a r e  computed based on the  ex- 
i s t i n g  ve loc i ty  diagram design values. A t r u e  redesign would suggest c e r t a i n  
changes i n  the  ve loc i ty  diagram design t h a t  i n  t u r n  would be r e f l ec t ed  i n  the  
blade design values. 

The f a c t  t h a t  t he  ca lcu la t ions  give negative camber and deviat ion angles  

The combination of high in le t - f low angle, s m a l l  r e -  
i nd ica t e s  t h e  need f o r  a ca re fu l  evaluat ion of t he  design system f o r  use a t  
high in le t - f low angles. 
quired f l u i d  turning angles, and minimum allowable blade thicknesses  found f o r  
the  t y p i c a l  t i p  element make t h i s  region of the  blade espec ia l ly  sens i t ive .  

Comparisons of t h e  values of p a r t s  1 t o  4 i l l u s t r a t e  t he  s e n s i t i v i t y  of 
t h e  blade design equations t o  va r i a t ions  of t he  cor rec t ion  f a c t o r s  f o r  i nc i -  
dence and deviat ion angle. They a l s o  ind ica te  the  need f o r  prec ise  measure- 
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ments during t e s t i n g  and ca re fu l  de f in i t i ons  of reference angles  from da ta  
p lo ts .  

F ina l ly ,  the  performance c h a r a c t e r i s t i c s  of t h i s  rotor together  with the  
da t a  of reference 6 ind ica te  t h a t  at  high values of both in le t - f low angle and 
loading small changes can result i n  s ign i f i can t  va r i a t ions  i n  blade design or 
blade performance parameters. Consequently, i n  blade rows of t h i s  type, if  
acceptable l e v e l s  of design poin t  p e r f o r m c e  and blade s ta l l  margin a r e  to be 
obtained, ca re fu l  a t t e n t i o n  should be made to a l l  d e t a i l s  of t he  design. 

SUMMARY OF RFSULTS 

An axial-flow-pump rotor with a 0.7 hub-tip r a t i o  and design D-factors of 
0.43 and 0.70 a t  t h e  t i p  and hub, respect ively,  w a s  t e s t e d  i n  water. The f o l -  
lowing summarize the  p r inc ipa l  results observed from t h e  rotor blade element 
performance: 

Under noncavitating conditions 

1. A t  design flow a comparison of the blade element performance with de- 
s ign values ind ica tes  t he  following: 

( a )  I n l e t  axial ve loc i ty  w a s  higher than design except i n  the  t i p  r e -  
gion, where it w a s  lower than design (probably because of e f f e c t s  of outer  
casing boundary l aye r ) .  This forced the  t i p  element t o  operate very close 
t o  a blade s t a l l  condition. 

( b )  Measured lo s ses  w e r e  lower than design except i n  the  t i p  region, 
where they were considerably higher than the  predicted design values. 

( c )  Excluding the  t i p  region, energy addi t ion  w a s  lower than design 
but  combined with the  lower-than-design lo s ses  to produce a close- to-  
design head-r ise  coef f ic ien t .  I n  the  t i p  region the  energy addi t ion w a s  
higher than design and produced a higher-than-design head-rise coe f f i c i en t  
( i n  s p i t e  of higher-than-design lo s ses )  but  at a lower-than-design e f f i -  
ciency. 

2. For t h i s  spec i f ic  r o t o r  geometry and l e v e l  of loading, a t y p i c a l  loss-  
coef f ic ien t  against  incidence angle cha rac t e r i s t i c  showed t h e  following: 

(a) Minimum loss,  where defined, occurred over a very narrow flow 
range. 

( b )  Flow (or incidence angle) margin between minimum-loss operating 
condition and pos i t i ve  s ta l l  point  (defined as point  at which the  l o s s  
coe f f i c i en t  w a s  twice t h e  minimum value on the  high incidence (low-flow) 
s ide  of t he  minimum-loss operating po in t )  w a s  very small. 

( c )  Gradual increase i n  l o s s  coe f f i c i en t  as t h e  flow w a s  var ied from 
the  minimum-loss value to higher flows (lower incidence angle).  
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3. A comparison of the measured results with those predicted from the de- 
sign rules of reference l, and interpretation of these results indicate that 

(a) Application of the design rules to designs with inlet-flow angles 
outside the range covered by the two-dimensional air-cascade data used to 
formulate the design procedure is dangerous. 
the higher inlet-flow angles would be desirable. 

Additional cascade data at 

(b)-The blade design equations are very sensitive to small angle 
variations at high inlet-flow angles. This indicates the need for precise 
measurements and careful interpretation of the data from investigations of 
this ty-pe of pump rotor. 

(c) With the type of loss coefficient - incidence angle characteris- 
tic measured for this ty-pe blade, considerations of flow margin between 
design and positive blade stall points indicate that the minimum-loss op- 
erating condition may not be a desirable design point for many applica- 
tions. 

(d) Significant differences between reference blade deviation angles 
obtained from two-dimensional cascade results and three-dimensional rotor 
tests occurred only in hub and tip regions where loss levels indicated 
secondary flow effects were significant. 

Under cavitating conditions 

1. At a r o t o r  tip speed of 141.5 feet per second the effects of cavitation 
on rotor performance are first noted at a net positive suction head of 116 feet. 
This corresponds to an average cavitation nwiber of approximately 0.191. 

2. Cavitation generally affects rotor performance in the following ways: 

(a) Increases losses 

(b) Decreases energy addition 

(c) Decreases low-loss operating range 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, June 23, 1964 
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APPENDIX A 

SYMBOLS 

C 

D 

g 

H 

Hsv 

c\H 

h 

h, 

i 

k 

N 

Q 

r 

U 

v 

P 

Y 

6 

rl 

K 

blade chord, in .  

d i f fus ion  f a c t o r  

acce lera t ion  due t o  gravi ty ,  32.17 f t / s e c  

t o t a l  head, f t  

net  pos i t i ve  suct ion head, f t  

head r i s e ,  f t  

s t a t i c  head, f t  

2 

vapor head, f t  

incidence angle,  deg 

cav i t a t ion  number 

r o t a t i v e  speed, rpm 

f l o w  r a t e ,  gal/min 

radius ,  in.  

ro to r  t angen t i a l  veloci ty ,  f t / s e c  

f l u i d  ve loc i ty ,  f t / s e c  

flow angle,  angle between d i r ec t ion  of flow and axial d i rec t ion ,  deg 

blade s e t t i n g  angle, angle between chord l i n e  and axial d i rec t ion ,  deg 

deviat ion angle, deg 

eff ic iency,  percent 

blade angle, angle between tangent t o  blade mean camber l i n e  and a x i a l  
d i rec t ion ,  deg 

blade so l id i ty ,  c /s  

flow coe f f i c i en t  

blade camber angle, K~ - K ~ ,  deg 
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Jr head-rise coefficient 

cu rotor relative total head-loss coefficient 

Sub scripts : 

- 

C 

h 

i 

m 

max 

P 

t 

z 

e 

2 -D 

1 

2 

parameter obtained from air-compressor stage investigations 

hub 

ideal 

measured 

maximum 

parameter obtained from pump-stage investigations 

tip 

axial direction 

tangential direction 

parameter obtained from two-dimensional air-cascade investigation 

measuring station at rotor inlet 

measuring station at rotor outlet 

Super scripts : 
- 

averaged value 

I relative to rotor 
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APPENDIX B 

EQUATIONS 

Blade Element Equations 

I d e a l  head r i s e :  

Rotor r e l a t i v e  t o t a l  head-loss coe f f i c i en t :  

Blade d i f fus ion  f ac to r :  

o r ,  f o r  rl = r2 

Efficiency: 

Cavi ta t ion number: 

Head-rise coe f f i c i en t :  
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Ideal head-rise coefficient: 

Flow coefficient: 

Incidence angle: 

Deviation angle: 

Overall and Averaged Parameter Equations 

Mass-averaged total head: 

Mass-averaged efficiency: 

Mass-averaged head-rise coefficient: 
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Average inlet axial velocity: 

- 144% 

t,l h,l 

Average inlet-flow coefficient: 
- .... 

Average blade cavitation number: 

Net positive suction head: 

Hsv = H1 - hv 
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